A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine.

نویسندگان

  • Dandan Li
  • Wei Cheng
  • Yurong Yan
  • Ye Zhang
  • Yibing Yin
  • Huangxian Ju
  • Shijia Ding
چکیده

A functional nucleic acid-based amplification machine was designed for simple and label-free ultrasensitive colorimetric biosensing of microRNA (miRNA). The amplification machine was composed of a complex of trigger template and C-rich DNA modified molecular beacon (MB) and G-rich DNA (GDNA) as the probe, polymerase and nicking enzyme, and a dumbbell-shaped amplification template. The presence of target miRNA triggered MB mediated strand displacement to cyclically release nicking triggers, which led to a toehold initiated rolling circle amplification to produce large amounts of GDNAs. The formed GDNAs could stack with hemin to form G-quadruplex/hemin DNAzyme, a well-known horseradish peroxidase (HRP) mimic, for catalyzing a colorimetric reaction. The modified MB improved the stringent target recognition and reduced background signal. The proposed sensing strategy showed very high sensitivity and selectivity with a wide dynamic range from 10 aM to 1.0 nM, and enabled successful visual analysis of trace amount of miRNA in real sample by the naked eye. This rapid and highly efficient signal amplification strategy provided a simple and sensitive platform for miRNA detection. It would be a versatile and powerful tool for clinical molecular diagnostics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection

We describe a new method for the detection of miRNA in biological samples. This technology is based on the isothermal nicking enzyme amplification reaction and subsequent hybridization of the amplification product with gold nanoparticles and magnetic microparticles (barcode system) to achieve naked-eye colorimetric detection. This platform was used to detect a specific miRNA (miRNA-10b) associa...

متن کامل

Au nanoparticles/g-C3N4 modified biosensor for electrochemical detection of gastric cancer miRNA based on hairpin locked nucleic acids probe

Objective: The annual incidence of cancer in the world is growing rapidly. The most important factor in the cure of cancers is their early diagnosis. miRNA, as a biomarker for early detection of cancer, has attracted a lot of attention. Methods: In this study, an electrochemical biosensor was developed to detect the amount of miR-106a, the biomarker of gastric cancer, by modifying a glass...

متن کامل

Evaluation of Nucleic Acid Sequence Based Amplification (NASBA) and Reverse Transcription Polymerase Chain Reaction for Detection of Coxsackievirus B3 in Cell Culture and Animal Tissue Samples

Enteroviruses are the causative agents of a number of diseases in humans. Group B coxsackieviruses are believed to be the most common viral agents responsible for human heart disease. Genomic data of enteroviruses has allowed developing new molecular approaches such as Nucleic Acid Sequence Based Amplification (NASBA) for detection of such viruses. In this study, coxsackievirus B3 (CVB3) was de...

متن کامل

An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care.

With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to ...

متن کامل

Photoelectrochemical biosensing platform for microRNA detection based on in situ producing electron donor from apoferritin-encapsulated ascorbic acid.

A novel signal "on" type of photoelectrochemical biosensor for microRNA-21 hybridization detection was fabricated, where Bi2S3 nanorods were used as photoactive material with a maximum adsorption at 450 nm visible light, hairpin-structure DNA as detecting probe, streptavidin as signal capturing unit and biotin functionalized ascorbic acid loaded apoferritin as signal amplification unit. Hybridi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Talanta

دوره 146  شماره 

صفحات  -

تاریخ انتشار 2016